Clustering is the classification of objects into different groups, or more precisely, the partitioning of a data set into subsets (clusters), so that the data in each subset (ideally) share some common trait - often proximity according to some defined distance measure. Data clustering is a common technique for statistical data analysis, which is used in many fields, including machine learning, data mining, pattern recognition, image analysis and bioinformatics. The computational task of classifying the data set into k clusters is often referred to as k-clustering.
Data clustering algorithms can be hierarchical. Hierarchical algorithms find successive clusters using previously established clusters. Hierarchical algorithms can be agglomerative ("bottom-up") or divisive ("top-down"). Agglomerative algorithms begin with each element as a separate cluster and merge them into successively larger clusters. Divisive algorithms begin with the whole set and proceed to divide it into successively smaller clusters. Partitional algorithms typically determine all clusters at once, but can also be used as divisive algorithms in the hierarchical clustering.
Two-way clustering, co-clustering or biclustering are clustering methods where not only the objects are clustered but also the features of the objects, i.e., if the data is represented in a data matrix, the rows and columns are clustered simultaneously.An important step in any clustering is to select a distance measure, which will determine how the similarity of two elements is calculated. This will influence the shape of the clusters, as some elements may be close to one another according to one distance and further away according to another. For example, in a 2-dimensional space, the distance between the point (x=1, y=0) and the origin (x=0, y=0) is always 1 according to the usual norms, but the distance between the point (x=1, y=1) and the origin can be square of 2, or 1 if you take respectively the 1-norm, 2-norm or infinity-norm distance.
COMMON DISTANCE FUNCTIONS
• The Euclidean distance (also called distance as the crow flies or 2-norm distance). A review of cluster analysis in health psychology research found that the most common distance measure in published studies in that research area is the Euclidean distance or the squared Euclidean distance.
• The Manhattan distance (also called taxicab norm or 1-norm)
• The maximum norm
• The Mahalanobis distance corrects data for different scales and correlations in the variables
• The angle between two vectors can be used as a distance measure when clustering high dimensional data. See Inner product space.
• The Hamming distance (sometimes edit distance) measures the minimum number of substitutions required to change one member into another.
CREATING CLUSTERS
• Hierarchical clustering builds (agglomerative), or breaks up (divisive), a hierarchy of clusters. The traditional representation of this hierarchy is a tree (called a dendrogram), with individual elements at one end and a single cluster containing every element at the other. Agglomerative algorithms begin at the leaves of the tree, whereas divisive algorithms begin at the root. (In the figure, the arrows indicate an agglomerative clustering.)
• Cutting the tree at a given height will give a clustering at a selected precision. In the following example, cutting after the second row will yield clusters {a} {b c} {d e} {f}. Cutting after the third row will yield clusters {a} {b c} {d e f}, which is a coarser clustering, with a smaller number of larger clusters.
No comments:
Post a Comment