INTRODUCTION
The explosive growth of 802.11-based wireless LANs has attracted interest in providing higher data rates and greater system capacities. Among the IEEE 802.11 standards, the 802.11a standard based on OFDM modulation scheme has been defined to address high-speed and large-system-capacity challenges. Hardware implementations are often used to meet the high-data rate requirements of 802.11a standard. Although software based solutions are more attractive due to the lower cost, shorter development time, and higher flexibility, it is still a challenge to meet the high-data-rate requirements of 802.11a by software. In this project, we simulate (Modelsim/Matlab) a software-based 802.11a digital baseband transmitter using Verilog HDL /Matlab. The transmitter can operate over all data rates defined in the 802.11a standard and are compatible with the high-rate portions of the 802.11g standard. Two major optimizations have been used in the software implementation to achieve the high-data-rate:
1) parallelizing the scrambler function and
2) concatenating the FEC encoder, puncturing, and inter leaver functions.
Digital signal processors (DSPs) are a special class of processor optimized for signal-processing applications in communication systems. Although DSPs have been used to implement the 802.11a standard, they can only support limited data rates due to the lack of global parallelism found at the application level. Hence, it is still a major challenge to develop a software implementation for the 802.11a standard on a DSP to meet the high-data-date requirements.
802.11A DIGITAL BASEBAND TRANSMITTER
The OFDM modulation scheme used in 802.11a distributes the data over 52 subcarriers on a 20MHz channel to mitigate the effects of multipath. Among the 52 subcarriers, 48 are for data and 4 are for pilot signals used for tracking. Each subcarrier is 312.5kHz wide, giving raw data rates from 125kbits/s to 1.125Mbits/s per subcarrier depending on the modulation type – binary phase shift keying (BPSK), quaternary PSK (QPSK), 16-quadrature amplitude modulation (QAM), or 64-QAM – and the error-correcting code rate (1/2, 2/3, or 3/4). The composite signal therefore has a data rate ranging from 6Mbits/s to 54Mbits/s in the 20MHz channel.
VIDEO DEMO
No comments:
Post a Comment