clc
clear all;
close all;
warning off;
disp('----------------------------------');
disp('Greetings from Verilog Course Team');
disp('Website:www.verilogcourseteam.com');
disp('Email:info@verilogcourseteam.com');
disp('WhatsApp @ +91 790 456 8 456');
disp('----------------------------------');
disp('*************************************************************************************************');
disp('DESIGN OF ENERGY DETECTOR, MATCHED FILTER, COVARIANCE AND EIGEN VALUE SPECTRUM SENSING TECHNIQUES');
disp('*************************************************************************************************');
pause(5);
detail_info;
pause(5);
disp('---------------------------------');
disp('EXECUTING OR RULE WITH AWGN NOISE');
disp('---------------------------------');
srt_node=1;
N=20;
M=300;
hval=1;
ind=1;
snr_range=1:1:20;
RULE_ERROR
pause;
%%
disp('---------------------------------------');
disp('EXECUTING MAJORITY RULE WITH AWGN NOISE');
disp('---------------------------------------');
srt_node=N/2;
N=20;
M=300;
hval=1;
ind=1;
snr_range=1:1:20;
RULE_ERROR
pause;
%%
disp('----------------------------------');
disp('EXECUTING AND RULE WITH AWGN NOISE');
disp('----------------------------------');
srt_node=N;
N=20;
M=300;
hval=1;
ind=1;
snr_range=1:1:20;
RULE_ERROR
% N=20;
% M=300;
% snr=10;
nsval=wgn(N,M,snr);
rjih0=nsval;
rjih1=ones(N,M)+nsval;
pfrange=0.1:0.1:1;
ind=1;
for pf=pfrange
thres=gaminv(1-pf,1);
yjh0=(sum((rjih0.').^2))/10000;
yjh1=(sum((rjih1.').^2))/10000;
pd=length(find(yjh1>=thres));
pfxx=length(find(yjh0>thres));
pdprop(ind)=pd/N;
pmprop(ind)=1-pdprop(ind);
pfprop(ind)=pf;
qdprop_res=0;
qrprop_res=0;
pdprop_res=pdprop(ind);
pfprop_res=pfprop(ind);
for l=srt_node:1:N
qdprop_res=qdprop_res+(factorial(N)*(pdprop_res^l)*((1-pdprop_res)^(N-l))/(factorial(l)*factorial(N-l)));
qrprop_res=qrprop_res+(factorial(N)*(pfprop_res^l)*((1-pfprop_res)^(N-l))/(factorial(l)*factorial(N-l)));
end
outqd(ind)=qdprop_res;
qmprop_res=1-qdprop_res;
outqm(ind)=qmprop_res;
error_prop(ind)=qrprop_res+qmprop_res;
ind=ind+1;
end
outqm=sort(outqm,'descend');
energy_res_x=pfprop;
energy_res_y=outqm;
%%
nsval=wgn(N,M,snr);
rjih0=nsval;
rjih1=ones(N,M)+nsval;
ind=1;
for pf=pfrange
thres=gaminv(1-pf,1);
hmf=phased.MatchedFilter;
for k3=1:N
rjih0_filt(k3,:)=step(hmf,rjih0(k3,:));
rjih1_filt(k3,:)=step(hmf,rjih1(k3,:));
end
yjh0=(sum((rjih0_filt.').^2))/10000;
yjh1=(sum((rjih1_filt.').^2))/10000;
pd=length(find(yjh1>=thres));
pfxx=length(find(yjh0>thres));
pdprop(ind)=pd/N;
pmprop(ind)=1-pdprop(ind);
pfprop(ind)=pf;
qdprop_res=0;
qrprop_res=0;
pdprop_res=pdprop(ind);
pfprop_res=pfprop(ind);
for l=srt_node:1:N
qdprop_res=qdprop_res+(factorial(N)*(pdprop_res^l)*((1-pdprop_res)^(N-l))/(factorial(l)*factorial(N-l)));
qrprop_res=qrprop_res+(factorial(N)*(pfprop_res^l)*((1-pfprop_res)^(N-l))/(factorial(l)*factorial(N-l)));
end
outqd(ind)=qdprop_res;
qmprop_res=1-qdprop_res;
outqm(ind)=qmprop_res;
error_prop(ind)=qrprop_res+qmprop_res;
ind=ind+1;
end
outqm=sort(outqm,'descend');
match_res_y=outqm;
match_res_x=pfprop;
%%
nsval=wgn(N,M,snr);
rjih0=nsval;
rjih1=ones(N,M)+nsval;
smooth_val=4;
ind=1;
for pf=pfrange
kcov1=1+((smooth_val-1)*sqrt(2/(M*3.14)));
kcov2=1-(qfuncinv(pf)*sqrt(2/(M)));
kcov=(kcov1/kcov2)*2;
for k3=1:N
rnval=rjih0(k3,:);
[outlm tcov]=auto_corr_function(rnval,smooth_val);
tcov_finalh0(k3)=(tcov);
rnval=rjih1(k3,:);
[outlm tcov]=auto_corr_function(rnval,smooth_val);
tcov_finalh1(k3)=tcov;
end
yjh0=tcov_finalh0;
yjh1=tcov_finalh1;
pd=length(find(yjh1>=kcov));
pfxx=length(find(yjh0>kcov));
pdprop(ind)=pd/N;
pmprop(ind)=1-pdprop(ind);
pfprop(ind)=pf;
qdprop_res=0;
qrprop_res=0;
pdprop_res=pdprop(ind);
pfprop_res=pfprop(ind);
for l=srt_node:1:N
qdprop_res=qdprop_res+(factorial(N)*(pdprop_res^l)*((1-pdprop_res)^(N-l))/(factorial(l)*factorial(N-l)));
qrprop_res=qrprop_res+(factorial(N)*(pfprop_res^l)*((1-pfprop_res)^(N-l))/(factorial(l)*factorial(N-l)));
end
outqd(ind)=qdprop_res;
qmprop_res=1-qdprop_res;
outqm(ind)=qmprop_res;
error_prop(ind)=qrprop_res+qmprop_res;
ind=ind+1;
end
outqm=sort(outqm,'descend');
cov_res_x=pfprop;
cov_res_y=outqm;
%%
outqm=zeros(1,length(pfrange));
smooth_val=4;
ind=1;
for pf=pfrange(1:end-2)
keig1=((sqrt(M+15*smooth_val)).^2)/((sqrt(M-15*smooth_val)).^2);
keig2=1+(((sqrt(M+15*smooth_val)).^(-2/3))/((M*15*smooth_val).^(1/6)))*expinv(1-pf);
keig=(keig1*keig2)*150;
for k3=1:N
rnval=rjih0(k3,:);
[outlm teig]=eig_val_function(rnval,smooth_val);
tcov1_finalh0(k3)=teig;
rnval=rjih1(k3,:);
[outlm teig]=eig_val_function(rnval,smooth_val);
tcov1_finalh1(k3)=teig;
end
yjh0=tcov1_finalh0;
yjh1=tcov1_finalh1;
pd=length(find(yjh1>=keig));
pfxx=length(find(yjh0>keig));
pdprop(ind)=pd/N;
pmprop(ind)=1-pdprop(ind);
pfprop(ind)=pf;
qdprop_res=0;
qrprop_res=0;
pdprop_res=pdprop(ind);
pfprop_res=pfprop(ind);
for l=srt_node:1:N
qdprop_res=qdprop_res+(factorial(N)*(pdprop_res^l)*((1-pdprop_res)^(N-l))/(factorial(l)*factorial(N-l)));
qrprop_res=qrprop_res+(factorial(N)*(pfprop_res^l)*((1-pfprop_res)^(N-l))/(factorial(l)*factorial(N-l)));
end
outqd(ind)=qdprop_res;
qmprop_res=1-qdprop_res;
outqm(ind)=qmprop_res;
error_prop(ind)=qrprop_res+qmprop_res;
ind=ind+1;
end
eig_res_x=pfprop;
eig_res_y=outqm;
%%
figure,plot(energy_res_x,energy_res_y,'r:s','linewidth',2);
hold on,plot(match_res_x,match_res_y,'b-^','linewidth',2);
hold on,plot(cov_res_x,cov_res_y,'g->','linewidth',2);
hold on,plot(eig_res_x,eig_res_y,'k-<','linewidth',2);
grid on;
xlabel('Propability of False Alarm');
ylabel('Propability of Missed');
legend('Energy Detector','Matched Filter','Covariance','Eigen Method');
x1=normrnd(0,0.5);
x2=normrnd(0,0.5);
hval=sqrt(x1^2+x2^2);
for snr=snr_range
nsval=wgn(N,M,snr);
rjih0=nsval;
rjih1=(hval*ones(N,M))+nsval;
pf=0.5;
thres=gaminv(1-pf,1);
yjh0=(sum((rjih0.').^2))/10000;
yjh1=(sum((rjih1.').^2))/10000;
pd=length(find(yjh1>=thres));
pfxx=length(find(yjh0>thres));
pdprop(ind)=pd/N;
pmprop(ind)=1-pdprop(ind);
pfprop(ind)=pf;
pfprop1(ind)=snr;
qdprop_res=0;
qrprop_res=0;
pdprop_res=pdprop(ind);
pfprop_res=pfprop(ind);
for l=srt_node:1:N
qdprop_res=qdprop_res+(factorial(N)*(pdprop_res^l)*((1-pdprop_res)^(N-l))/(factorial(l)*factorial(N-l)));
qrprop_res=qrprop_res+(factorial(N)*(pfprop_res^l)*((1-pfprop_res)^(N-l))/(factorial(l)*factorial(N-l)));
end
outqd(ind)=qdprop_res;
qmprop_res=1-qdprop_res;
outqm(ind)=qmprop_res;
error_prop(ind)=(qrprop_res+qmprop_res)-1;
ind=ind+1;
end
error_prop=sort(error_prop,'descend');
energy_res_x=pfprop1;
energy_res_y=error_prop;
%% 2. Matched filter
ind=1;
for snr=snr_range
nsval=wgn(N,M,snr);
rjih0=nsval;
rjih1=(hval*ones(N,M))+nsval;
thres=gaminv(1-pf,1);
hmf=phased.MatchedFilter;
for k3=1:N
rjih0_filt(k3,:)=step(hmf,rjih0(k3,:));
rjih1_filt(k3,:)=step(hmf,rjih1(k3,:));
end
yjh0=(sum((rjih0_filt.').^2))/10000;
yjh1=(sum((rjih1_filt.').^2))/10000;
pd=length(find(yjh1>=thres));
pfxx=length(find(yjh0>thres));
pdprop(ind)=pd/N;
pmprop(ind)=1-pdprop(ind);
pfprop(ind)=pf;
pfprop1(ind)=snr;
qdprop_res=0;
qrprop_res=0;
pdprop_res=pdprop(ind);
pfprop_res=pfprop(ind);
for l=srt_node:1:N
qdprop_res=qdprop_res+(factorial(N)*(pdprop_res^l)*((1-pdprop_res)^(N-l))/(factorial(l)*factorial(N-l)));
qrprop_res=qrprop_res+(factorial(N)*(pfprop_res^l)*((1-pfprop_res)^(N-l))/(factorial(l)*factorial(N-l)));
end
outqd(ind)=qdprop_res;
qmprop_res=1-qdprop_res;
outqm(ind)=qmprop_res;
error_prop(ind)=(qrprop_res+qmprop_res)-1;
ind=ind+1;
end
error_prop=sort(error_prop,'descend');
match_res_x=pfprop1;
match_res_y=error_prop;
%% 3. Covariance
smooth_val=4;
ind=1;
for snr=snr_range
nsval=wgn(N,M,snr);
rjih0=nsval;
rjih1=(hval*ones(N,M))+nsval;
kcov1=1+((smooth_val-1)*sqrt(2/(M*3.14)));
kcov2=1-(qfuncinv(pf)*sqrt(2/(M)));
kcov=kcov1/kcov2;
for k3=1:N
rnval=rjih0(k3,:);
[outlm tcov]=auto_corr_function(rnval,smooth_val);
tcov_finalh0(k3)=(tcov);
rnval=rjih1(k3,:);
[outlm tcov]=auto_corr_function(rnval,smooth_val);
tcov_finalh1(k3)=tcov;
end
yjh0=tcov_finalh0;
yjh1=tcov_finalh1;
pd=length(find(yjh1>=kcov));
pfxx=length(find(yjh0>kcov));
pdprop(ind)=pd/N;
pmprop(ind)=1-pdprop(ind);
pfprop(ind)=pf;
pfprop1(ind)=snr;
qdprop_res=0;
qrprop_res=0;
pdprop_res=pdprop(ind);
pfprop_res=pfprop(ind);
for l=srt_node:1:N
qdprop_res=qdprop_res+(factorial(N)*(pdprop_res^l)*((1-pdprop_res)^(N-l))/(factorial(l)*factorial(N-l)));
qrprop_res=qrprop_res+(factorial(N)*(pfprop_res^l)*((1-pfprop_res)^(N-l))/(factorial(l)*factorial(N-l)));
end
outqd(ind)=qdprop_res;
qmprop_res=1-qdprop_res;
outqm(ind)=qmprop_res;
error_prop(ind)=(qrprop_res+qmprop_res)-1;
ind=ind+1;
end
error_prop=sort(error_prop,'descend');
cov_res_x=pfprop1;
cov_res_y=error_prop;
%% eigen method
smooth_val=6;
ind=1;
for snr=snr_range
nsval=wgn(N,M,snr);
rjih0=nsval;
rjih1=(hval*ones(N,M))+nsval;
keig1=((sqrt(M+15*smooth_val)).^2)/((sqrt(M-15*smooth_val)).^2);
keig2=1+(((sqrt(M+15*smooth_val)).^(-2/3))/((M*15*smooth_val).^(1/6)))*expinv(1-pf);
keig=(keig1*keig2)*20;
for k3=1:N
rnval=rjih0(k3,:);
[outlm teig]=eig_val_function(rnval,smooth_val);
tcov1_finalh0(k3)=teig;
rnval=rjih1(k3,:);
[outlm teig]=eig_val_function(rnval,smooth_val);
tcov1_finalh1(k3)=teig;
end
yjh0=tcov1_finalh0;
yjh1=tcov1_finalh1;
pd=length(find(yjh1>=keig));
pfxx=length(find(yjh0>keig));
pdprop(ind)=pd/N;
pmprop(ind)=1-pdprop(ind);
pfprop(ind)=pf;
pfprop1(ind)=snr;
qdprop_res=0;
qrprop_res=0;
pdprop_res=pdprop(ind);
pfprop_res=pfprop(ind);
for l=srt_node:1:N
qdprop_res=qdprop_res+(factorial(N)*(pdprop_res^l)*((1-pdprop_res)^(N-l))/(factorial(l)*factorial(N-l)));
qrprop_res=qrprop_res+(factorial(N)*(pfprop_res^l)*((1-pfprop_res)^(N-l))/(factorial(l)*factorial(N-l)));
end
outqd(ind)=qdprop_res;
qmprop_res=1-qdprop_res;
outqm(ind)=qmprop_res;
error_prop(ind)=(qrprop_res+qmprop_res)-1;
ind=ind+1;
end
error_prop=sort(error_prop,'descend');
eig_res_x=pfprop1;
eig_res_y=error_prop;
%%
figure,plot(energy_res_x,energy_res_y,'m:s','linewidth',2);
hold on,plot(match_res_x,match_res_y,'g-^','linewidth',2);
hold on,plot(cov_res_x,cov_res_y,'c->','linewidth',2);
hold on,plot(eig_res_x,eig_res_y,'y-<','linewidth',2);
grid on;
xlabel('SNR');
ylabel('Total Error Propability ');
legend('Energy Detector','Matched Filter','Covariance','Eigen Method');
No comments:
Post a Comment